This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity.

Nat. Neurosci. 2005;8(3):339-45. 10.1038/nn1398

Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity.

Hanchar JH, Dodson PD, Olsen RW, Otis TS, Wallner M
Abstract:
Neuronal mechanisms underlying alcohol intoxication are unclear. We find that alcohol impairs motor coordination by enhancing tonic inhibition mediated by a specific subtype of extrasynaptic GABA(A) receptor (GABAR), alpha6beta3delta, expressed exclusively in cerebellar granule cells. In recombinant studies, we characterize a naturally occurring single-nucleotide polymorphism that causes a single amino acid change (R100Q) in alpha6 (encoded in rats by the Gabra6 gene). We show that this change selectively increases alcohol sensitivity of alpha6beta3delta GABARs. Behavioral and electrophysiological comparisons of Gabra6(100R/100R) and Gabra6(100Q/100Q) rats strongly suggest that alcohol impairs motor coordination by enhancing granule cell tonic inhibition. These findings identify extrasynaptic GABARs as critical targets underlying low-dose alcohol intoxication and demonstrate that subtle changes in tonic inhibition in one class of neurons can alter behavior.