This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Characterization of human and rat brain myristoyl-CoA:protein N-myristoyltransferase: evidence for an alternative splice variant of the enzyme.

Biochem. J. 1998;333 ( Pt 3)():491-5.

Characterization of human and rat brain myristoyl-CoA:protein N-myristoyltransferase: evidence for an alternative splice variant of the enzyme.

McIlhinney RAJ, Young K, Egerton M, Camble R, White A, Soloviev M
Abstract:
Using 5'-rapid amplification of cDNA ends, we have identified an extended 5'-end of mRNA coding for human myristoyl-CoA:protein N-myristoyltransferase (NMT). PCR using primers based on this new 5'-sequence and reverse primers within the currently accepted coding sequence of the enzyme resulted in the identification of a novel splice variant of NMT. In vitro translation of these cDNAs resulted in the production of proteins with apparent molecular masses of 63 kDa and 48 kDa. Immunoprecipitation of NMT from human cell lines and immunoblotting of a range of rat tissues has identified proteins with molecular masses corresponding to those derived from these cDNAs, and provided evidence that their relative abundance differs among tissues. Our results provide evidence that this enzyme exists in different forms resulting from alternative splicing of the mRNA.