This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Characterization of an N-terminal secreted domain of the type-1 human metabotropic glutamate receptor produced by a mammalian cell line.

J. Neurochem. 2002;80(2):346-53.

Characterization of an N-terminal secreted domain of the type-1 human metabotropic glutamate receptor produced by a mammalian cell line.

Selkirk JV, Challiss JRA, Rhodes A, McIlhinney RAJ
Full text PDF download: 
Abstract:
A Chinese hamster ovary cell line has been established which secretes the N-terminal domain of human mGlu1 receptor. The secreted protein has been modified to contain a C-terminal hexa-histidine tag and can be purified by metal-chelate chromatography to yield a protein with an apparent molecular weight of 130 kDa. Following treatment with dithiothreitol the apparent molecular weight is reduced to 75 kDa showing that the protein is a disulphide-bonded dimer. N-terminal protein sequencing of both the reduced and unreduced forms of the protein yielded identical sequences, confirming that they were derived from the same protein, and identifying the site of signal-peptide cleavage of the receptor as residue 32 in the predicted amino acid sequence. Endoglycosidase treatment of the secreted and intracellular forms of the protein showed that the latter was present as an endoglycosidase H-sensitive dimer, indicating that dimerization is taking place in the endoplasmic reticulum. Characterization of the binding of [3H]quisqualic acid showed that the protein was secreted at levels of up to 2.4 pmol/mL and the secreted protein has a Kd of 5.6 +/- 1.8 nm compared with 10 +/- 1 nm for baby hamster kidney (BHK)-mGlu1alpha receptor-expressing cell membranes. The secreted protein maintained a pharmacological profile similar to that of the native receptor and the binding of glutamate and quisqualate were unaffected by changes in Ca2+ concentration.