This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study.

Neuroscience 1991;41(2-3):483-94.

Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study.

Bolam JP, Francis CM, Henderson Z
Full text PDF download: 
Abstract:
In order to determine whether the cholinergic fibres that innervate the substantia nigra make synaptic contact with dopaminergic neurons of the substantia nigra pars compacta, a double immunocytochemical study was carried out in the rat and ferret. Sections of perfusion-fixed mesencephalon were incubated first to reveal choline acetyltransferase immunoreactivity to label the cholinergic terminals and then tyrosine hydroxylase immunoreactivity to label the dopaminergic neurons. Each antigen was localized using peroxidase reactions but with different chromogens. At the light microscopic level, in confirmation of previous observations, choline acetyltransferase-immunoreactive axons and axonal boutons were found throughout the substantia nigra. The highest density of these axons was found in the pars compacta where they were often seen in close apposition to tyrosine hydroxylase-immunoreactive cell bodies and dendrites. In the ferret where the choline acetyltransferase immunostaining was particularly strong, bundles of immunoreactive fibres were seen to run through the reticulata perpendicular to the pars compacta. These bundles were associated with tyrosine hydroxylase-immunoreactive dendrites that descended into the reticulata. The choline acetyltransferase-immunoreactive fibres made "climbing fibre"-type multiple contacts with the tyrosine hydroxylase positive dendrites. At the electron microscopic level the choline acetyltransferase-immunoreactive axons were seen to give rise to vesicle-filled boutons that formed asymmetrical synaptic specializations with nigral dendrites and perikarya. The synapses were often associated with sub-junctional dense bodies. On many occasions the postsynaptic structures contained the tyrosine hydroxylase immunoreaction product, thus identifying them as dopaminergic. It is concluded that at least one of the synaptic targets of cholinergic terminals in the substantia nigra are the dendrites and perikarya of dopaminergic neurons and that in the ferret at least, the dendrites of dopaminergic neurons that descend into the pars reticulata receive multiple synaptic inputs from individual cholinergic axons.