J. Comp. Neurol. 1981;195(4):547-66. 10.1002/cne.901950402
Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey.
Full text PDF download:
Abstract:
The morphology of certain Golgi-stained cells was examined in the striate and peristriate cortex of the cat and in the striate cortex of the rhesus monkey. Neurons in layer III were selected on the basis of their characteristic vertical axon bundles, which are 20-150 microns in diameter and traverse layers II-V. Selected neurons were examined under the electron microscope to characterize their synapses and to establish their postsynaptic targets. It was found that double bouquet cells form symmetrical or type II synapses. In the cat the postsynaptic membrane specialization was more extensive than in the monkey. After removing the Golgi precipitate from boutons of two cells in the cat, small pleomorphic and flattened vesicles were found in the boutons. Earlier suggestions that double bouquet cells make synapses preferentially with spines of apical dendrites could not be confirmed. Out of 66 boutons in area 17 of the cat, 86.4% formed synapses with dendritic shafts, many of them belonging to nonpyramidal cells, 9% with perikarya of nonpyramidal cells, and only 4.6% with spines. Out of 19 synapses examined in area 18, 74% were contacting dendritic shafts and the rest contacted spines. In the monkey 60% of a total of 35 double bouquet cell synapses made synapses with dendritic shafts. A different type of double bouquet cell with densely spiny dendrites is also described in layer IV of the monkey striate cortex. This neuron formed asymmetrical synapses. It is suggested that layer III double bouquet cells with vertical axon bundles are probably inhibitory and act on other nonpyramidal cells and certain parts of pyramidal cells.