This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy.

EMBO J. 2006;25(12):2698-709. 10.1038/sj.emboj.7601157

Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy.

Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau L-E, McIlhinney RAJ, White JH, Bouvier M
Full text PDF download: 
Abstract:
The obligatory heterodimerization of the GABAB receptor (GBR) raises fundamental questions about molecular mechanisms controlling its signaling efficacy. Here, we show that NEM sensitive fusion (NSF) protein interacts directly with the GBR heterodimer both in rat brain synaptosomes and in CHO cells, forming a ternary complex that can be regulated by agonist stimulation. Inhibition of NSF binding with a peptide derived from GBR2 (TAT-Pep-27) did not affect basal signaling activity but almost completely abolished agonist-promoted GBR desensitization in both CHO cells and hippocampal slices. Taken with the role of PKC in the desensitization process, our observation that TAT-Pep-27 prevented both agonist-promoted recruitment of PKC and receptor phosphorylation suggests that NSF is a priming factor required for GBR desensitization. Given that GBR desensitization does not involve receptor internalization, the NSF/PKC coordinated action revealed herein suggests that NSF can regulate GPCR signalling efficacy independently of its role in membrane trafficking. The functional interaction between three bona fide regulators of neurotransmitter release, such as GBR, NSF and PKC, could shed new light on the modulation of presynaptic GBR action.