This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat.

J. Comp. Neurol. 1998;397(3):403-20.

Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat.

Clarke NP, Bolam JP
Full text PDF download: 
Abstract:
Glutamatergic neurotransmission in the subthalamic nucleus (STN) and in the output nuclei of the basal ganglia is critical in the expression of basal ganglia function, and increased glutamate transmission in these nuclei has been implicated in the pathology of Parkinson's disease. In order to determine the precise spatial relationship of subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors to nerve terminals enriched in glutamate or gamma-aminobutyric acid (GABA) in one of the output nuclei, the entopeduncular nucleus (EP), and the STN, postembedding immunolabelling for glutamate receptor subunits and for glutamate and GABA was carried out in the rat. Immunolabelling for the AMPA glutamate receptor subunits 1, 2/3, and 4 (GluR1, GluR2/3, and GluR4) and the NMDA receptor subunit 1 (NR1) was localized predominantly within asymmetrical synapses in both the EP and STN. Quantitative analysis revealed that, on average for the whole population, each of the receptor subunits was evenly distributed along the synaptic specialization. Multiple AMPA receptor subunits and the GluR2/3 and NMDA (NR1) subunits were co-localized within individual synapses. The combination of immunolabelling for glutamate and GABA with the receptor immunolabelling revealed that the majority of axon terminals presynaptic to the receptor-immunoreactive synapses were enriched in glutamate immunoreactivity and were GABA-immunonegative. However, at some NR1- and GluR2/3-positive synapses, the level of glutamate immunoreactivity was low in the presynaptic terminal and, in the STN, some of them were GABA-immunopositive. It is concluded that glutamatergic transmission at individual synapses of different origins in the EP and STN is mediated by a combination ofAMPA and NMDA glutamate receptors.