This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat.

J. Comp. Neurol. 1991;304(4):666-80. 10.1002/cne.903040412

Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat.

Beaulieu C, Somogyi P
Full text PDF download: 
Abstract:
The synaptic circuits underlying cholinergic activation of the cortex were studied by establishing the quantitative distribution of cholinergic terminals on GABAergic inhibitory interneurons and on non-GABAergic neurons in the striate cortex of the cat. Antibodies to choline acetyltransferase and GABA were used in combined electron microscopic immunocytochemical experiments. Most of the cholinergic boutons formed synapses with dendritic shafts (87.3%), much fewer with dendritic spines (11.5%), and only occasional synapses were made on neuronal somata (1.2%). Overall, 27.5% of the postsynaptic elements, all of them dendritic shafts, were immunoreactive for GABA, thus demonstrating that they originate from inhibitory neurons. This is the highest value for the proportion of GABAergic postsynaptic targets obtained so far for any intra- or subcortical afferents in cortex. There were marked variations in the laminar distribution of targets. Spines received synapses most frequently in layer IV (23%) and least frequently in layers V-VI (3%); most of these spines also received an additional synapse from a choline acetyltransferase-negative bouton. The proportion of GABA-positive postsynaptic elements was highest in layer IV (49%, two-thirds of all postsynaptic dendritic shafts), and lowest in layers V-VI (14%). The supragranular layers showed a distribution similar to that of the average of all layers. The quantitative distribution of targets postsynaptic to choline acetyltransferase-positive terminals is very different from the postsynaptic targets of GABAergic boutons, or from the targets of all boutons in layer IV reported previously. In both cases the proportion of GABA-positive dendrites was only 8-9% of the postsynaptic elements. At least 8% of the total population of choline acetyltransferase-positive boutons, presumably originating from the basal forebrain, were also immunoreactive for GABA. This raises the possibility of cotransmission at a significant proportion of cholinergic synapses in the cortex. The present results demonstrate that cortical GABAergic neurons receive a richer cholinergic synaptic input than non-GABAergic cells. The activation of GABAergic neurons by cholinergic afferents may increase the response specificity of cortical cells during cortical arousal thought to be mediated by the basal forebrain. The laminar differences indicate that in layer IV, at the first stage of the processing of thalamic input, the cholinergic afferents exert substantial inhibitory influence in order to raise the threshold and specificity of cortical neuronal responses. Once the correct level of activity has been set at the level of layer IV, the influence can be mainly facilitatory in the other layers.