This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Inside the brain of a neuron.

EMBO Rep. 2006;7(9):886-92. 10.1038/sj.embor.7400789

Inside the brain of a neuron.

Sidiropoulou K, Pissadaki EK, Poirazi P
Abstract:
For many decades, neurons were considered to be the elementary computational units of the brain and were assumed to summate incoming signals and elicit action potentials only in response to suprathreshold stimuli. Although modelling studies predicted that single neurons constitute a much more powerful computational entity, able to perform an array of nonlinear calculations, this possibility was not explored experimentally until the discovery of active mechanisms in the dendrites of most neuron types. Here, we review several modelling studies that have addressed information processing in single neurons, starting with those characterizing the arithmetic of different dendritic components, to those tackling neuronal integration at the cell body and, finally, those analysing the computational abilities of the axon. We present modelling predictions along with supporting experimental data in an effort to highlight the significant contribution of modelling work to enhancing our understanding of single-neuron arithmetic.