This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration.

Nat. Neurosci. 2012;15(9):1272-80. 10.1038/nn.3185

K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration.

Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J
Full text PDF download: 
Abstract:
Phasic activation of the dopamine (DA) midbrain system in response to unexpected reward or novelty is critical for adaptive behavioral strategies. This activation of DA midbrain neurons occurs via a synaptically triggered switch from low-frequency background spiking to transient high-frequency burst firing. We found that, in medial DA neurons of the substantia nigra (SN), activity of ATP-sensitive potassium (K-ATP) channels enabled NMDA-mediated bursting in vitro as well as spontaneous in vivo burst firing in anesthetized mice. Cell-selective silencing of K-ATP channel activity in medial SN DA neurons revealed that their K-ATP channel-gated burst firing was crucial for novelty-dependent exploratory behavior. We also detected a transcriptional upregulation of K-ATP channel and NMDA receptor subunits, as well as high in vivo burst firing, in surviving SN DA neurons from Parkinson's disease patients, suggesting that burst-gating K-ATP channel function in DA neurons affects phenotypes in both disease and health.