This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons.

Neuroscience 1996;75(1):69-82.

Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons.

Richmond SA, Irving AJ, Molnar E, McIlhinney RAJ, Michelangeli F, Henley JM, Collingridge GL
Abstract:
The distribution of the glutamate receptor subunit GluR1 was investigated in cultured hippocampal neurons by confocal microscopy, using polyclonal antibodies directed against either the N- or C-terminal region. On living neurons, GluR1 immunofluorescence was detected with the N-terminal antibody only. GluR1 was localized in a highly punctate manner on the surface of neuronal soma and throughout the dendritic tree. Many GluR1 puncta co-localized with the synaptic marker synaptophysin, although extrasynaptic GluR1 puncta were also observed. A comparison of GluR1 subunit distribution of living neurons labelled with N-terminal antibody with that obtained after the cells had been fixed, permeabilized and subsequently reacted with C-terminal or additional N-terminal antibody showed a number of differences. In permeabilized cells additional, diffuse labelling was observed which was very pronounced in the soma and extended into the proximal dendrites. Furthermore, some spines showed little or no labelling of their membrane surface, but labelled strongly after the cells had been fixed and permeabilized. Such spines may be the postsynaptic components of silent or suboptimal synapses.