This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study.

J. Neurocytol. 1983;12(2):325-44.

Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study.

Bolam JP, Somogyi P, Takagi H, Fodor I, Smith AD
Full text PDF download: 
Abstract:
An antiserum, to substance P has been used to study the neostriatum of rats which has received intracerebral injections of colchicine. Both cell bodies and nerve fibres were found to display immunoreactivity. Some of the fibres were swollen and could be traced back to their parent cell body. Examination in the electron microscope of structures that had first been identified in the light microscope showed that there are two different types of substance P-immunoreactive cell body. The first kind (type I) of immunoreactive cell body was of medium size and had a smooth surfaced nucleus. It displayed the ultrastructural features typical of medium-size spiny neurons. Identified axons of type I neurons gave rise to immunoreactive axon collaterals within the neostriatum: boutons along these collaterals were found to form symmetrical synaptic contacts. The second kind (type II) of immunoreactive cell body was also of medium-size and had a round or oval shape, but the nucleus was deeply indented and was surrounded by a thin rim of cytoplasm. Synaptic input to this neuron was sparse and consisted of small boutons that made symmetrical contacts with the perikaryon and proximal dendrites. Many immunoreactive dot-like structures could be seen in the light microscope: upon examination in the electron microscope these were found to be boutons. All fifty-six synaptic boutons that were studied made symmetrical synaptic contacts. These boutons were indistinguishable from the boutons of axon collaterals of identified type I immunoreactive neurons. The most common postsynaptic structures were dendrites, including some dendritic spines, although synapses between immunoreactive boutons and several perikarya, and an axon initial segment were observed. The morphological features of the immunoreactive boutons in the neostriatum were very similar to one type of substance P-immunoreactive bouton in the substantia nigra and to a bouton type in the substantia nigra which is labelled following the anterograde transport of horseradish peroxidase from the striatum. It is suggested that there are two kinds of substance P-containing neurons in the striatum and that one of these is likely to belong to the medium-spiny class. The latter type of neuron is probably the source of the striatonigral substance P-containing projection and of the immunoreactive boutons within the striatum. The finding of substance P-immunoreactive synaptic boutons within the neostriatum provides a morphological basis for the view that substance P might serve as a neurotransmitter in the neostriatum.