This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Metabotropic glutamate receptor type 1alpha and tubulin assemble into dynamic interacting complexes.

J. Neurochem. 2001;76(3):750-7.

Metabotropic glutamate receptor type 1alpha and tubulin assemble into dynamic interacting complexes.

Ciruela F, McIlhinney RAJ
Full text PDF download: 
Abstract:
Metabotropic glutamate receptors (mGlu receptors) are coupled to G-protein second messenger pathways and modulate glutamate neurotransmission in the brain, where they are targeted to specific synaptic locations. Very recently, we identified tubulin as an interacting partner of the mGlu(1alpha) receptor in rat brain. Using BHK-570 cells permanently expressing the receptor we have shown that this interaction occurs predominantly with soluble tubulin, following its translocation to the plasma membrane. In addition, treatment of the cells with the agonist quisqualic acid induce tubulin depolymerization and its translocation to the plasma membrane. Immunofluorescence detection of both the receptor and tubulin in agonist-treated cells reveals a disruption of the microtubule network and an increased clustering of the receptor. Collectively these data demonstrate that the mGlu(1alpha) receptor interacts with soluble tubulin and that this association can take place at the plasma membrane.