This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

A monoclonal antibody that reacts immunohistochemically with amyloid deposits in the brain tissue of Alzheimer patients binds to an epitope present on complement factor 4.

J. Neurochem. 1991;57(4):1172-7.

A monoclonal antibody that reacts immunohistochemically with amyloid deposits in the brain tissue of Alzheimer patients binds to an epitope present on complement factor 4.

McDonald B, Esiri MM, McIlhinney RAJ
Abstract:
The mouse monoclonal antibody SMP has previously been demonstrated to react immunohistochemically with neurofibrillary tangles, argyrophilic plaques, and leptomeningeal vascular amyloid deposits in the brain tissue of individuals dying from pathologically diagnosed Alzheimer's disease. In preliminary studies the antibody was shown, by size exclusion chromatography, to bind to a protein with an apparent molecular mass of 260 kDa present in the CSF and serum of demented individuals. Chromatographic separation of a 40% ammonium sulphate precipitate of CSF and serum yielded immunoreactive fractions that were subjected to 9% sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by western blotting. Probing the nitrocellulose blot with the antibody revealed that the antibody selectively binds to a protein chain with an apparent molecular mass of 100 kDa. By using a combination of affinity chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, coupled with western blotting, the serum component with which the antibody reacts has been identified as complement factor 4. In addition, the antibody has been shown to react specifically with an epitope on the alpha-chain of this protein.