This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure.

J. Comp. Neurol. 1981;195(4):567-84. 10.1002/cne.901950403

Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure.

Somogyi P, Bolam JP, Smith AD
Full text PDF download: 
Abstract:
Following the injection of horseradish peroxidase into the ipsilateral substantia nigra, 36 retrogradely labelled neurons in the striatum were characterized (in three rats) by Golgi staining and gold toning: each neuron was of the medium-size, densely spinous type. Prior to the injection of horseradish peroxidase, two of the rats had had lesions placed in the ipsilateral motor cortex, the third rat had had a lesion placed in the ipsilateral frontal and prefrontal cortex. In the electron microscope, degenerating boutons of cortical neurons were found in asymmetrical synaptic contact with the spines of proximal and distal dendrites of all six of the identified striatonigral neurons that were studied. Some of the degenerating boutons were small (diameter 0.1-0.3 micron), while others were larger (1-2 microns). An individual dendrite of a striatonigral neuron was in symaptic contact with very few degenerating boutons. Local axon collaterals in the striatum could be traced from two of the identified striatonigral neurons that received degenerating cortical boutons. These were studied in the electron microscope; their boutons formed symmetrical synapses with spines or dendritic shafts of other striatal neurons. The synaptic boutons contained large, clear, round and pleomorphic vesicles. The postsynaptic targets of these boutons morphologically resemble the dendrites of medium-size spiny neurons. It is concluded that afferents from the cortex make monosynaptic contact with the dendritic spines of medium-size spiny striatonigral neurons and that such neurons have local axon collaterals in the striatum that form synapses with other spiny neurons.