This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor.

J. Biol. Chem. 2007;282(35):25299-307. 10.1074/jbc.M702778200

N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor.

Atlason PT, Garside ML, Meddows E, Whiting P, McIlhinney RAJ
Full text PDF download: 
Abstract:
The time course of the assembly of the N-methyl-D-aspartate receptor was examined in a cell line expressing it under the control of the dexamethasone promoter. These studies suggested a delay between the appearance of the NR1 and NR2A subunits and their stable association as examined by co-immunoprecipitation of NR1 and NR2A. This prompted us to examine the stability and folding of the individual subunits using nonreduced polyacrylamide gels and the sulfhydryl cross-linker BMH. Both studies showed that the NR1 subunit was expressed in a monomer and dimer form, whereas both NR2 and NR3 showed substantial aggregation on both nonreduced gels and after cross-linking. Protein degradation experiments showed that NR1 was relatively stable, whereas NR2 and NR3 were more rapidly degraded. When co-expressed with NR1, NR2 was more stable. Fluorescence recovery after photobleaching experiments showed that, under conditions of reduced ATP, the diffusion rate of NR2 and NR3 in the endoplasmic reticulum was reduced, whereas that of NR1 was unaffected. Together these data show that NR1 folds stably when expressed alone, unlike NR2 and NR3, and provides the substrate for assembly of the N-methyl-D-aspartate receptor.