This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra.

Eur. J. Neurosci. 2003;18(12):3279-93.

The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra.

Boyes J, Bolam JP
Full text PDF download: 
Abstract:
The inhibitory effects of GABA within the substantia nigra (SN) are mediated in part by metabotropic GABA(B) receptors. To better understand the mechanisms underlying these effects, we have examined the subcellular localization of the GABA(B) receptor subunits, GABA(B1) and GABA(B2), in SN neurons and afferents using pre-embedding immunocytochemistry combined with anterograde or retrograde labelling. In both the SN pars compacta (SNc) and pars reticulata (SNr), GABA(B1) and GABA(B2) showed overlapping, but distinct, patterns of immunolabelling. GABA(B1) was more strongly expressed by putative dopaminergic neurons in the SNc than by SNr projection neurons, whereas GABA(B2) was mainly expressed in the neuropil of both regions. Immunogold labelling for GABA(B1) and GABA(B2) was localized in presynaptic and postsynaptic elements throughout the SN. The majority of labelling was intracellular or was associated with extrasynaptic sites on the plasma membrane. In addition, labelling for both subunits was found on the presynaptic and postsynaptic membranes at symmetric, putative GABAergic synapses, including those formed by anterogradely labelled striatonigral and pallidonigral terminals. Labelling was also observed on the presynaptic membrane and at the edge of the postsynaptic density at asymmetric, putative excitatory synapses. Double immunolabelling, using the vesicular glutamate transporter 2, revealed the glutamatergic nature of many of the immunogold-labelled asymmetric synapses. The widespread distribution of GABA(B) subunits in the SNc and SNr suggests that GABA(B)-mediated effects in these regions are likely to be more complex than previously described, involving presynaptic autoreceptors and heteroreceptors, and postsynaptic receptors on different populations of SN neurons.