This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat.

Brain Res. 1986;397(2):279-89.

Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat.

Bolam JP, Ingham CA, Izzo PN, Levey AI, Rye DB, Smith AD, Wainer BH
Abstract:
Antibodies against substance P and choline acetyltransferase (ChAT) have been used in a sequential double-immunocytochemical ultrastructural study of the rat forebrain. The peroxidase-anti-peroxidase procedure was used for both antigens, however, two different substrates for the peroxidase reactions were used. The substance P-immunoreactive sites were first localized using 3,3'-diaminobenzidine as the substrate, then the ChAT-immunoreactive sites were localized using benzidine dihydrochloride. The reaction product formed by the two substrates was distinguishable in both the light and electron microscopes. Using this procedure, the cell bodies and proximal dendrites of identified cholinergic neurons in the neostriatum were found to receive symmetrical synaptic input from substance P-immunoreactive boutons. A similar pattern of substance P-immunoreactive synaptic input was observed onto magnocellular basal forebrain cholinergic neurons in the ventral pallidum and ventromedial globus pallidus. In both the striatum and basal forebrain substance P-immunoreactive boutons were also seen in contact with structures that did not display ChAT immunoreactivity.