This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Synaptic connections of neurones identified by Golgi impregnation: characterization by immunocytochemical, enzyme histochemical, and degeneration methods.

J Electron Microsc Tech 1990;15(4):332-51. 10.1002/jemt.1060150404

Synaptic connections of neurones identified by Golgi impregnation: characterization by immunocytochemical, enzyme histochemical, and degeneration methods.

Somogyi P
Full text PDF download: 
Abstract:
For more than a century the Golgi method has been providing structural information about the organization of neuronal networks. Recent developments allow the extension of the method to the electron microscopic analysis of the afferent and efferent synaptic connections of identified, Golgi-impregnated neurones. The introduction of degeneration, autoradiographic, enzyme histochemical, and immunocytochemical methods for the characterization of Golgi-impregnated neurones and their pre- and postsynaptic partners makes it possible to establish the origin and also the chemical composition of pre- and postsynaptic elements. Furthermore, for a direct correlation of structure and function the synaptic interconnections between physiologically characterized, intracellularly HRP-filled neurones and Golgi-impregnated cells can be studied. It is thought that most of the neuronal communication takes place at the synaptic junction. In the enterprise of unravelling the circuits underlying the synaptic interactions, the Golgi technique continues to be a powerful tool of analysis.