This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex.

J. Comp. Neurol. 1994;341(1):16-24. 10.1002/cne.903410103

Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex.

Anderson JC, Douglas RJ, Martin KA, Nelson JC
Abstract:
Spiny stellate neurons of area 17 of the cat's visual cortex were physiologically characterised and injected intracellularly with horseradish peroxidase. Six neurons from sublamina 4A were selected. Five had the S-type of simple receptive fields; one had a complex receptive field. Their axons formed boutons mainly in layers 3 and 4. An electron microscopic examination of 45 boutons showed that each bouton formed one asymmetric synapse on average. Spines were the most frequent synaptic target (74%); dendritic shafts formed the remainder (26%). On the basis of ultrastructural characteristics, 8% of the target dendrites were characterised as originating from smooth gamma-aminobutyrate-ergic (GABAergic) neurons. Thus the major output of spiny stellate neurons is to other spiny neurons, probably pyramidal neurons in layer 3 and spiny stellates in layer 4.