This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

A type of aspiny neuron in the rat neostriatum accumulates [3H]gamma-aminobutyric acid: combination of Golgi-staining, autoradiography, and electron microscopy.

J. Comp. Neurol. 1983;213(2):121-34. 10.1002/cne.902130202

A type of aspiny neuron in the rat neostriatum accumulates [3H]gamma-aminobutyric acid: combination of Golgi-staining, autoradiography, and electron microscopy.

Bolam JP, Clarke DJ, Smith AD, Somogyi P
Full text PDF download: 
Abstract:
Light microscopic autoradiography was used to identify cells in the neostriatum that became labelled after the local injection of [3H]gamma-aminobutyrate (GABA). The GABA-accumulating cells comprised up to 15% of the total population of neurons. Thirty-seven of these cells were examined in the electron microscope and it was found that they all had similar cytological characteristics, i.e., prominent nuclear indentations, a moderate volume of cytoplasm, rich in organelles, and sparse synaptic input to the perikaryon. Nine of the cells that had accumulated GABA were also impregnated following Golgi staining. These Golgi-impregnated neurons were of medium size and all had dendrites that were aspiny, often varicose, and that occasionally followed a recurving path. After gold toning, the Golgi-impregnated, GABA-accumulating neurons were examined in the electron microscope and were found to receive boutons forming symmetrical or asymmetrical synaptic contacts on their somata and dendrites; the symmetrical synapses were most common on the cell body and proximal dendrites, while the distal dendrites mainly received boutons forming asymmetrical contacts. We conclude that one type of GABAergic neuron in the neostriatum is a type of medium-sized aspiny neuron and that this neuron is likely to receive synaptic input both from neurons within the striatum and from neurons in distant brain regions. We suggest that this neuron is a local circuit neuron in the neostriatum since its morphological features are quite distinct from those of identified projecting neurons.