This is an historical archive of the activities of the MRC Anatomical Neuropharmacology Unit (MRC ANU) that operated at the University of Oxford from 1985 until March 2015. The MRC ANU established a reputation for world-leading research on the brain, for training new generations of scientists, and for engaging the general public in neuroscience. The successes of the MRC ANU are now built upon at the MRC Brain Network Dynamics Unit at the University of Oxford.

What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease?

Ann. N. Y. Acad. Sci. 2012;1265():9-24. 10.1111/j.1749-6632.2012.06650.x

What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease?

Little S, Peter Brown
Full text PDF download: 
Abstract:
Feedback control of deep brain stimulation (DBS) in Parkinson's disease has great potential to improve efficacy, reduce side effects, and decrease the cost of treatment. In this, the timing and intensity of stimulation are titrated according to biomarkers that capture current clinical state. Stimulation may be at standard high frequency or intelligently patterned to directly modify specific pathological rhythms. The search for and validation of appropriate feedback signals are therefore crucial. Signals recorded from the DBS electrode currently appear to be the most promising source of feedback. In particular, beta-frequency band oscillations in the local field potential recorded at the stimulation target may capture variation in bradykinesia and rigidity across patients, but this remains to be confirmed within patients. Biomarkers that reliably reflect other impairments, such as tremor, also need to be established. Finally, whether brain signals are causally important needs to be established before stimulation can be specifically patterned rather than delivered at empirically defined high frequency.